Effect of Agricultural Feedstock to Energy Conversion Rate on Bioenergy and GHG Emissions
نویسندگان
چکیده
Taiwan is eager to develop renewable energy because it is vulnerable to energy price distortion and ocean level rise. Previous studies show bioenergy technologies can be applied mutually, but pay little attention on feedstocks to energy conversion rate, which has potential influences on policy making in renewable energy and environment. This study employs a price endogenous mathematical programming model to simultaneously simulate the market operations under various feedstocks to energy conversion rates, energy prices, and greenhouse gas (GHG) prices. The result shows pyrolysis-based electricity can reach up to 2.75 billion kWh annually, but it will be driven out at low conversion rate and high GHG price. Pyrolysis plus biochar application will be the optimal option in terms of carbon sequestration. Market valuation on potential threats of extreme weather could have substantial influences on ethanol and renewable electricity generation. To achieve aimed GHG emission reduction and/or bioenergy production, government intervention may be involved to align the market operation with Taiwan’s environmental policy.
منابع مشابه
Life-cycle assessment of net greenhouse-gas flux for bioenergy cropping systems.
Bioenergy cropping systems could help offset greenhouse gas emissions, but quantifying that offset is complex. Bioenergy crops offset carbon dioxide emissions by converting atmospheric CO2 to organic C in crop biomass and soil, but they also emit nitrous oxide and vary in their effects on soil oxidation of methane. Growing the crops requires energy (e.g., to operate farm machinery, produce inpu...
متن کاملFarm systems assessment of bioenergy feedstock production: Integrating bio-economic models and life cycle analysis approaches
Climate change and energy security concerns have driven the development of policies that encourage bioenergy production. Meeting EU targets for the consumption of transport fuels from bioenergy by 2020 will require a large increase in the production of bioenergy feedstock. Initially an increase in 'first generation' biofuels was observed, however 'food competition' concerns have generated inter...
متن کاملOptimal crop management can reduce energy use and greenhouse gases emissions in rainfed canola production
Energy use and greenhouse gases (GHG) emissions in rainfed canola production in north eastern Iran were analyzed to find measures to reduce energy use and GHG emissions. Four production scenarios, i.e. a high-input, a low-input, a better crop management and a usual scenario, evaluated. All activities and production processes were monitored and recorded over three consecutive years. The usua...
متن کاملThe global economic long-term potential of modern biomass in a climate-constrained world
Low-stabilization scenarios consistent with the 2 °C target project large-scale deployment of purpose-grown lignocellulosic biomass. In case a GHG price regime integrates emissions from energy conversion and from land-use/land-use change, the strong demand for bioenergy and the pricing of terrestrial emissions are likely to coincide. We explore the global potential of purposegrown lignocellulos...
متن کاملThe Pyrolysis-Bioenergy-Biochar Pathway to Carbon-Negative Energy
Avoiding irreversible climate change requires >50% reduction in anthropogenic greenhouse gas (GHG) emissions by the year 2050 and the net removal of GHGs from the atmosphere by the end of the 21st century. This challenge is particularly daunting given that energy derived from fossil fuels is at the core of all modern economies and some sectors of the economy, such as transportation, will be alm...
متن کامل